首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1548篇
  免费   97篇
  国内免费   114篇
  2023年   24篇
  2022年   11篇
  2021年   28篇
  2020年   31篇
  2019年   44篇
  2018年   31篇
  2017年   38篇
  2016年   54篇
  2015年   31篇
  2014年   47篇
  2013年   80篇
  2012年   49篇
  2011年   89篇
  2010年   54篇
  2009年   93篇
  2008年   87篇
  2007年   117篇
  2006年   102篇
  2005年   79篇
  2004年   74篇
  2003年   64篇
  2002年   54篇
  2001年   41篇
  2000年   25篇
  1999年   34篇
  1998年   29篇
  1997年   23篇
  1996年   23篇
  1995年   23篇
  1994年   22篇
  1993年   18篇
  1992年   20篇
  1991年   19篇
  1990年   15篇
  1989年   11篇
  1988年   15篇
  1987年   11篇
  1986年   19篇
  1985年   17篇
  1984年   25篇
  1983年   16篇
  1982年   22篇
  1981年   20篇
  1980年   10篇
  1979年   11篇
  1978年   4篇
  1977年   2篇
  1976年   2篇
  1972年   1篇
排序方式: 共有1759条查询结果,搜索用时 703 毫秒
91.
林地利用被认为是污泥资源化利用的重要方式,但施用污泥对林木根系生长的影响报道较少。本研究通过根箱试验,分析表施和混施10%污泥对速生树种团花不同土层根系形态、土壤pH值和电导率动态变化及根系重金属含量的影响,并拟合土壤pH值、电导率和根系重金属含量与根长的关系。结果表明: 与不施污泥(对照)相比,混施污泥显著抑制了团花根长、根表面积和根体积增长,混施污泥120和240 d后,0~20 cm土层总根长分别为不施污泥的76.9%和67.4%;表施污泥对团花根长和根表面积的影响不显著,但显著提高了根体积。混施污泥显著提高了土壤pH值和电导率及根系重金属含量,混施污泥0~20和20~40 cm土层根系镉含量分别是不施污泥的11.5和10.0倍。线性回归拟合分析显示,不同处理0~20 cm土层的电导率与根长均呈显著负相关;表施和混施污泥根系镉含量与根长呈极显著负相关。上述结果表明,混施污泥抑制了团花根系生长,这可能是由于混施污泥提高了土壤电导率和根系镉含量所致,而表施污泥对团花根系生长的作用不明显。  相似文献   
92.
【目的】在白念珠菌中建立一个快捷方便经济的基因敲除与筛选标记再循环的DNA操作系统。【方法】通过ExoIII介导的不依赖于连接酶的克隆策略,在异源筛选标记基因CmLEU2、CdHIS1和CdARG4基因的两侧分别插入了loxP位点,成为筛选标记基因盒扩增的模板。全基因合成了经过白念珠菌密码子优化的rTetR元件,并组装成Tet-on启动子。将密码子优化的重组酶Cre基因置于该启动子控制下。然后将他们插入筛选标记基因CdHIS1和CdARG4的CDS区域,形成筛选标记基因再循环载体。【结果】构建了3个用于白念珠菌基因敲除的侧翼含有loxP位点的筛选标记基因载体,以及2个含有Tet-on启动子控制的Cre酶的载体用于筛选标记基因的再循环。【结论】成功构建了一个白念珠菌中可诱导的基因敲除和筛选标记再循环的载体系统并成功应用于多个基因缺失株构建。这个系统有助于快速构建白念珠菌的单基因和多基因敲除菌株。  相似文献   
93.
In this study proteins extracted from prepupae of Hermetia illucens, also known as black soldier fly, are investigated as promising base for a new type of bioplastics for agricultural purposes. Design of experiments techniques are employed to perform a rational study on the effects of different combination of glycerol as plasticizer, citric acid as cross-linking agent and distilled water as solvent on the capability of proteins to form a free-standing film through casting technique, keeping as fixed the quantity of proteins. Glycerol shows interesting properties as plasticizer contributing to the formation of homogenous and free-standing film. Moreover, mechanical and thermal characterizations are performed to estimate the effect of increasing amounts of proteins on the final properties and thickness of the specimens. Proteins derived from H. illucens can be successfully employed as base for bioplastics to be employed for agricultural purposes.  相似文献   
94.
Alcohol dehydrogenase (ADH) and amine dehydrogenase (AmDH)-catalyzed one-pot cascade conversion of an alcohol to an amine provides a simple preparation of chiral amines. To enhance the cofactor recycling in this reaction, we report a new concept of coupling whole-cells with the cell-free system to enable separated intracellular and extracellular cofactor regeneration and recycling. This was demonstrated by the respective biotransformation of racemic 4-phenyl-2-butanol 1a and 1-phenyl-2-propanol 1b to (R)-4-phenylbutan-2-amine 3a and (R)-1-phenylpropan-2-amine 3b . Escherichia coli cells expressing S-enantioselective CpsADH, R-enantioselective PfODH, and NADH oxidase (NOX) was developed to oxidize racemic alcohols 1a–b to ketones 2a–b with full conversion via intracellular NAD+ recycling. AmDH and glucose dehydrogenase (GDH) were used to convert ketones 2a–b to amines (R)- 3a–b with 89–94% conversion and 891–943 times recycling of NADH. Combining the cells and enzymes for the cascade transformation of racemic alcohols 1a–b gave 70% and 48% conversion to the amines (R)- 3a and (R)-3 b in 99% ee, with a total turnover number (TTN) of 350 and 240 for NADH recycling, respectively. Improved results were obtained by using the E. coli cells with immobilized AmDH and GDH: (R)- 3a was produced in 99% ee with 71–84% conversion and a TTN of 1410-1260 for NADH recycling, the highest value so far for the ADH–AmDH-catalyzed cascade conversion of alcohols to amines. The concept might be generally applicable to this type of reactions.  相似文献   
95.
Cargo transport by microtubule‐based motors is essential for cell organisation and function. The Bicaudal‐D (BicD) protein participates in the transport of a subset of cargoes by the minus‐end‐directed motor dynein, although the full extent of its functions is unclear. In this study, we report that in Drosophila zygotic BicD function is only obligatory in the nervous system. Clathrin heavy chain (Chc), a major constituent of coated pits and vesicles, is the most abundant protein co‐precipitated with BicD from head extracts. BicD binds Chc directly and interacts genetically with components of the pathway for clathrin‐mediated membrane trafficking. Directed transport and subcellular localisation of Chc is strongly perturbed in BicD mutant presynaptic boutons. Functional assays show that BicD and dynein are essential for the maintenance of normal levels of neurotransmission specifically during high‐frequency electrical stimulation and that this is associated with a reduced rate of recycling of internalised synaptic membrane. Our results implicate BicD as a new player in clathrin‐associated trafficking processes and show a novel requirement for microtubule‐based motor transport in the synaptic vesicle cycle.  相似文献   
96.
97.
Receptor recycling involves two endosome populations, peripheral early endosomes and perinuclear recycling endosomes. In polarized epithelial cells, either or both populations must be able to sort apical from basolateral proteins, returning each to its appropriate plasma membrane domain. However, neither the roles of early versus recycling endosomes in polarity nor their relationship to each other has been quantitatively evaluated. Using a combined morphological, biochemical, and kinetic approach, we found these two endosome populations to represent physically and functionally distinct compartments. Early and recycling endosomes were resolved on Optiprep gradients and shown to be differentially associated with rab4, rab11, and transferrin receptor; rab4 was enriched on early endosomes and at least partially depleted from recycling endosomes, with the opposite being true for rab11 and transferrin receptor. The two populations were also pharmacologically distinct, with AlF4 selectively blocking export of transferrin receptor from recycling endosomes to the basolateral plasma membrane. We applied these observations to a detailed kinetic analysis of transferrin and dimeric IgA recycling and transcytosis. The data from these experiments permitted the construction of a testable, mathematical model which enabled a dissection of the roles of early and recycling endosomes in polarized receptor transport. Contrary to expectations, the majority (>65%) of recycling to the basolateral surface is likely to occur from early endosomes, but with relatively little sorting of apical from basolateral proteins. Instead, more complete segregation of basolateral receptors from receptors intended for transcytosis occurred upon delivery to recycling endosomes.  相似文献   
98.
Data acquisition to perform LCA is time and capital consuming. There is already international data about environmental aspects in several processes. This study aims to verify the possibility of adapting international data to Brazilian conditions. Therefore, a Life Cycle Inventory was conducted to compare the use of national and international data for steel used in automobiles. This was done in three steps: objective and scope definition, inventory analysis and interpretation. LCI is a simplification of Life Cycle Assessment (LCA) as impact assessment is not taken into account. Even so, LCI takes into account all life cycle stages of a product, that is, from its extraction through its deposition. In this study, three phases of the life cycle were considered: steel manufacturing, automobile use and disposal. In the case studied, the amount of steel evaluated was 263 kg, which would be possible to be replaced by other materials in a 1,300 kg automobile. Resources and energy consumption, atmospheric emissions and solid residues production were taken into account within the analysis done. Results show that automobile use and materials manufacturing are responsible for the bulk of energy and resources consumption. Solid residues occur mainly in the discard phase, due to the low level of recycling. Several differences were also achieved between national and international data, which implies the need of environmental databases development.  相似文献   
99.
Goal, Scope and Background  The automotive industry has a long history in improving the environmental performance of vehicles - fuel economy and emission improvements, introduction of recycled and renewable materials, etc. The European Union also aims at improving the environmental performance of products by reducing, in particular, waste resulting from End-of-Life Vehicles (ELVs) for example. The European Commission estimates that ELVs contribute to approximately 1 % of the total waste in Europe [9]. Other European Union strategies are considering more life cycle aspects, as well as other impacts including resource or climate change. This article is summarizing the results of a European Commission funded project (LIRECAR) that aims at identifying the environmental impacts and relevance for combinations of recycling / recovery and lightweight vehicle design options over the whole life cycle of a vehicle - i.e. manufacturing, use and recycling/recovery. Three, independent and scientific LCA experts reviewed the study according to ISO 14040. From the beginning, representatives of all Life Cycle Stakeholders have been involved (European materials & supplier associations, an environmental Non-Governmental Organization, recycler’s association). Model and System Definition  The study compared 3 sets of theoretical vehicle weight scenarios: 1000 kg reference (material range of today’s end-of-life, mid-sized vehicles produced in the early 1990’s) and 2 lightweight scenarios for 100 kg and 250 kg less weight based on reference functions (in terms of comfort, safety, etc.) and a vehicle concept. The scenarios are represented by their material range of a broad range of lightweight strategies of most European car manufacturers. In parallel, three End-of-Life (EOL) scenarios are considered: EOL today and two theoretical extreme scenarios (100% recycling, respectively, 100% recovery of shredder residue fractions that are disposed of today). The technical and economical feasibility of the studied scenarios is not taken into consideration (e.g. 100% recycling is not possible). Results and Discussion  Significant differences between the various, studied weight scenarios were determined in several scenarios for the environmental categories of global warming, ozone depletion, photochemical oxidant creation (summer smog), abiotic resource depletion, and hazardous waste. However, these improvement potentials can be only realized under well defined conditions (e.g. material compositions, specific fuel reduction values and EOL credits) based on case-by-case assessments for improvements over the course of the life cycle. Looking at the studied scenarios, the relative contribution of the EOL phase represents 5% or less of the total life cycle impact for most selected impact categories and scenarios. The EOL technology variations studied do not impact significantly the considered environmental impacts. Exceptions include total waste, as long as stockpile goods (overburden, tailings and ore/coal processing residues) and EOL credits are considered. Conclusions and Recommendations  LIRECAR focuses only on lightweight/recycling, questions whereas other measures (changes in safety or comfort standards, propulsion improvements for CO2, user behavior) are beyond the scope of the study. The conclusions are also not necessarily transferable to other vehicle concepts. However, for the question of end-of-life options, it can be concluded that LIRECAR cannot support any general recommendation and/or mandatory actions to improve recycling if lightweight is affected. Also, looking at each vehicle, no justification could be found for the general assumption that lightweight and recycling greatly influence the affected environmental dimension (Global Warming Potential or resource depletion and waste, respectively). LIRECAR showed that this general assumption is not true under all analyzed circumstances and not as significant as suggested. Further discussions and product development targets shall not focus on generic targets that define the approach/technology concerned with how to achieve environmental improvement (weight reduction [kg], recycling quota [%]), but on overall life cycle improvement). To enable this case-by-case assessment, exchanges of necessary information with suppliers are especially relevant.  相似文献   
100.
Goal, Scope and Background  Gipuzkoa is a department of the Vasque Country (Spain) with a population of about 700,000 people. By the year 2000 approximately 85% of municipal solid waste in this area was managed by landfilling, and only 15% was recycled. Due to environmental law restrictions and landfill capacity being on its limit, a planning process was initiated by the authorities. LCA was used, from an environmental point of view, to assess 7 possible scenarios arising from the draft Plan for the 2016 time horizon. Main Features  In each scenario, 9 waste flows are analysed: rest waste, paper and cardboard, glass containers, light packaging, organic-green waste, as well as industrial/commercial wood, metals and plastics, and wastewater sludge. Waste treatments range from recycling to energy recovery and landfilling. Results  Recycling of the waste flows separated at the source (paper and cardboard, glass, light packaging, organic-green waste, wood packaging, metals and plastics) results in net environmental benefits caused by the substitution of primary materials, except in water consumption. These benefits are common to the 7 different scenarios analysed. However, some inefficiencies are detected, mainly the energy consumption in collection and transport of low density materials, and water consumption in plastic recycling. The remaining flows, mixed waste and wastewater sludge, are the ones causing the major environmental impacts, by means of incineration, landfilling of partially stabilised organic material, as well as thermal drying of sludge. With the characterisation results, none of the seven scenarios can be clearly identified as the most preferable, although, due to the high recycling rates expected by the Plan, net environmental benefits are achieved in 9 out of 10 impact categories in all scenarios when integrated waste management is assessed (the sum of the 9 flows of waste). Finally, there are no relevant differences between scenarios concerning the number of treatment plants considered. Nevertheless, only the effects on transportation impacts were assessed in the LCA, since the plant construction stage was excluded from the system boundaries. Conclusions  The results of the study show the environmental importance of material recycling in waste management, although the recycling schemes assessed can be improved in some aspects. It is also important to highlight the environmental impact of incineration and landfilling of waste, as well as thermal drying of sludge using fossil fuels. One of the main findings of applying LCA to integrated waste management in Gipuzkoa is the fact that the benefits of high recycling rates can compensate for the impacts of mixed waste and wastewater sludge. Recommendations and Outlook  Although none of the scenarios can be clearly identified as the one having the best environmental performance, the authorities in Gipuzkoa now have objective information about the future scenarios, and a multidisciplinary panel could be formed in order to weight the impacts if necessary. In our opinion, LCA was successfully applied in Gipuzkoa as an environmental tool for decision making.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号